



# **Musterprofil 3**

Tief entwickelte pseudovergleyte Parabraunerde mit erodiertem Al-Horizont aus würmzeitlichem Löss

| Verbreitung                                | ausgedehnte lösslehmbedeckte Platten im Lettenkeupergäu                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Vergesellschaftung                         | daneben mittel bis mäßig tief entwickelte Parabraunerden                                               |
| Lage und Aufnahmezeit                      |                                                                                                        |
| Ort:                                       | Herrenberg-Affstätt, Gewann "Breite"                                                                   |
| Höhe:                                      | 486 m NN                                                                                               |
| Aufnahmedatum:                             | 31.08.1999                                                                                             |
| Klima                                      |                                                                                                        |
| Mittl. Jahresniederschlag:                 | 724 mm (Nufringen, 455 m NN)                                                                           |
| Mittl. Jahrestemperatur:                   | 8,1 °C (Nufringen, 455 m NN)                                                                           |
| Wärmestufe nach ELLENBERG:                 | mäßig kühl (VII)                                                                                       |
| Georelief                                  |                                                                                                        |
| Reliefformtyp:                             | hängiger Scheitelbereich eines flachen Rückens                                                         |
| Lage:                                      | zentral                                                                                                |
| Neigung und Exposition:                    | 3 % SO                                                                                                 |
| Bodenwasserverhältnisse                    | hohe nutzbare Feldkapazität, schwach staunass mit geringer, stark verzögerter lateraler Wasserbewegung |
| Nutzung                                    | Acker                                                                                                  |
| Flächenkennzeichnung der<br>Bodenschätzung | L4LöD                                                                                                  |



#### Musterprofil 3

Profilkennzeichnung

Bodengenetische Einheit: tief entwickelte pseudovergleyte Parabraunerde mit erodiertem Al-

Horizont

Substratabfolge: stark toniger Schluff (bis 23 cm u. Fl.) über mittel und stark schluffigem

Ton (bis 120 cm u. Fl.) auf mittel bis stark tonigem Schluff

Ausgangsgestein: würmzeitlicher Löss (ab 320 cm u. Fl. von älterem Lösslehm unterlagert)

| Profilaufbau |          |                                                                                                                                                                                                                                                             |
|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ар           | – 18 cm  | stark toniger Schluff, sehr schwach grusig (Lettenkeupersandstein), dunkelgraubraun (10YR 3/4), mittel humos, sehr wenige Rostflecken, sehr schwach gebleicht, Fragmentgefüge mit Klumpen, stark durchwurzelt, locker gelagert, feucht                      |
| Ap,Sop       | – 23 cm  | stark toniger Schluff, sehr schwach grusig (Lettenkeupersandstein), dunkelgraubraun (10YR 3/4), mittel humos, wenige Fe-/Mn-Flecken und -Konkretionen, sehr schwach gebleicht, stark verfestigtes Kohärentgefüge, mittel durchwurzelt, feucht               |
| Sd-Bt1       | – 44 cm  | mittel schluffiger Ton, sehr schwach grusig (Lettenkeupersandstein), graubraun fleckig (7.5YR 4/4), sehr schwach humos, wenige Fe-/Mn-Flecken und -Konkretionen, sehr schwach gebleicht, Polyedergefüge, Regenwurmgänge, mittel durchwurzelt, dicht, feucht |
| Sd-Bt2       | – 76 cm  | stark schluffiger Ton, sehr schwach grusig (Lettenkeupersandstein), graubraun fleckig (7.5YR 4/5), sehr schwach humos, wenige Fe-/Mn-Flecken und -Konkretionen, sehr schwach gebleicht, Polyedergefüge, Regenwurmgänge, schwach durchwurzelt, dicht, feucht |
| Btv          | – 98 cm  | stark schluffiger Ton, sehr schwach grusig (Lettenkeupersandstein), gelblichbraun fleckig (10YR 5/6), sehr schwach humos, sehr wenige Fe-/Mn-Flecken und -Konkretionen, stark verfestigtes Kohärentgefüge, schwach durchwurzelt, dicht, feucht              |
| Bv           | – 120 cm | stark schluffiger Ton, gelblichbraun (10YR 5/6), sehr schwach humos, stark verfestigtes Kohärentgefüge, schwach durchwurzelt, dicht, feucht                                                                                                                 |
| ICc          | – 170 cm | mittel bis stark toniger Schluff, hellgelblichbraun (10YR 5.5/6),<br>karbonatreich, einzelne kleine Lösskindel, mittel verfestigtes<br>Kohärentgefüge, sehr schwach durchwurzelt, feucht                                                                    |
| II ICn1      | – 230 cm | mittel schluffiger Ton, gelbbraun (10YR 5.5/6), sehr karbonatarm, feucht (Bohrstocksondierung)                                                                                                                                                              |
| ICn2         | – 320 cm | schluffiger Lehm, gelblichbraun (10YR 5.5/6), karbonatarm, feucht (Bohrstocksondierung)                                                                                                                                                                     |
| III fBt      | – 340 cm | mittel schluffiger Ton, rötlichbraun (7.5YR 5/6), feucht (Bohrstocksondierung)                                                                                                                                                                              |



# **Musterprofil 3**

# **Bodenchemische Analysendaten**

| Hori-   | Entnahme-<br>tiefe | pH-<br>Wert          | Kar-<br>bonat |                         | Organische<br>Substanz | Э     |                                     | Nährstoff<br>(mg/100g) |                            |
|---------|--------------------|----------------------|---------------|-------------------------|------------------------|-------|-------------------------------------|------------------------|----------------------------|
| zont    | (cm)               | (CaCl <sub>2</sub> ) | (mg/g)        | C <sub>org</sub> (mg/g) | N <sub>t</sub> (mg/g)  | C/N   | P <sub>2</sub> O <sub>5</sub> (CAL) | K₂O<br>(CAL)           | Mg<br>(CaCl <sub>2</sub> ) |
| Ар      | 0 – 15             | 6,3                  | n. b.         | 13,4                    | 1,4                    | 10    | 10                                  | 28                     | 14                         |
| Ap,Sop  | n. b.              | n. b.                | n. b.         | n. b.                   | n. b.                  | n. b. | n. b.                               | n. b.                  | n. b.                      |
| Sd-Bt1  | 25 – 40            | 6,2                  | n. b.         | 5,8                     | 0,6                    | 10    | 1                                   | 5                      | 24                         |
| Sd-Bt2  | 50 – 70            | 6,6                  | <1            | 4,1                     | 0,5                    | 8     | 1                                   | 4                      | 30                         |
| Btv     | 80 – 95            | 6,8                  | <1            | 3,5                     | 0,4                    | n. b. | 1                                   | 4                      | 32                         |
| Bv      | 100 – 115          | 6,9                  | 4             | 3,5                     | 0,4                    | n. b. | 1                                   | 4                      | 29                         |
| ICc     | 125 – 140          | 7,3                  | 138           | 2,3                     | 0,2                    | 1     | 1                                   | 2                      | 20                         |
| II ICn1 | n. b.              | n. b.                | n. b.         | n. b.                   | n. b.                  | n. b. | n. b.                               | n. b.                  | n. b.                      |
| ICn2    | n. b.              | n. b.                | n. b.         | n. b.                   | n. b.                  | n. b. | n. b.                               | n. b.                  | n. b.                      |
| III fBt | n. b.              | n. b.                | n. b.         | n. b.                   | n. b.                  | n. b. | n. b.                               | n. b.                  | n. b.                      |

| Hori-   | Entnahme-<br>tiefe | Schwermetalle (mg/kg) |       |       |       |       |       |       |       |
|---------|--------------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|
| zont    | (cm)               | Pb                    | Cd    | Cr    | Cu    | Ni    | Hg    | Zn    | TI    |
| Ap      | 0 – 15             | 24                    | <0,10 | 48    | 22    | 33    | 0,07  | 53    | 0,10  |
| Ap,Sop  | n. b.              | n. b.                 | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |
| Sd-Bt1  | 25 – 40            | 23                    | <0,10 | 54    | 25    | 37    | <0,05 | 54    | 0,13  |
| Sd-Bt2  | 50 – 70            | 20                    | <0,10 | 54    | 24    | 39    | <0,05 | 50    | 0,21  |
| Btv     | 80 – 95            | 18                    | <0,10 | 54    | 24    | 42    | <0,05 | 55    | 0,10  |
| Bv      | 100 – 115          | 17                    | <0,10 | 51    | 22    | 38    | <0,05 | 52    | 0,10  |
| ICc     | 125 – 140          | 14                    | <0,10 | 34    | 16    | 21    | <0,05 | 29    | <0,05 |
| II ICn1 | n. b.              | n. b.                 | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |
| ICn2    | n. b.              | n. b.                 | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |
| III fBt | n. b.              | n. b.                 | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |



# **Musterprofil 3**

# **Bodenchemische Analysendaten**

| Hori-<br>zont | Entnahme- |             | Potenziell | e Sorptionsve          | rhältnisse (m | mol/z/kg) |       |  |
|---------------|-----------|-------------|------------|------------------------|---------------|-----------|-------|--|
|               | tiefe     | KVK         | BS         | austauschbare Kationen |               |           |       |  |
| 20111         | (cm)      | $KAK_{pot}$ | (%)        | Ca                     | Mg            | K         | Na    |  |
| Ар            | 0 – 15    | 184,9       | 61         | 100,3                  | 5,9           | 7,1       | <1,0  |  |
| Ap,Sop        | n. b.     | n. b.       | n. b.      | n. b.                  | n. b.         | n. b.     | n. b. |  |
| Sd-Bt1        | 25 – 40   | 222,5       | 73         | 145,5                  | 14,8          | 2,6       | <1,0  |  |
| Sd-Bt2        | 50 – 70   | 227,0       | 73         | 145,4                  | 17,6          | 2,6       | <1,0  |  |
| Btv           | 80 – 95   | 224,6       | 74         | 146,0                  | 19,1          | <1,0      | <1,0  |  |
| Bv            | 100 – 115 | 203,2       | 90         | 142,3                  | 37,7          | 2,3       | <1,0  |  |
| ICc           | 125 – 140 | 158,8       | 100        | 136,0                  | 21,3          | 1,5       | <1,0  |  |
| II ICn1       | n. b.     | n. b.       | n. b.      | n. b.                  | n. b.         | n. b.     | n. b. |  |
| ICn2          | n. b.     | n. b.       | n. b.      | n. b.                  | n. b.         | n. b.     | n. b. |  |
| III fBt       | n. b.     | n. b.       | n. b.      | n. b.                  | n. b.         | n. b.     | n. b. |  |

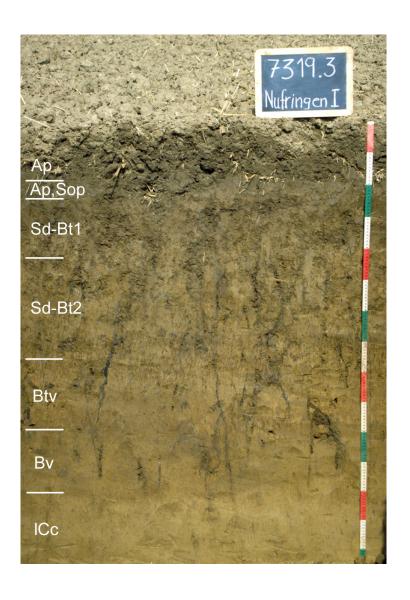
| Hori-<br>zont | Entnahme- |                      | Effektive Sorptionsverhältnisse (mmol/z/kg) |                        |       |       |       |       |       |       |       |  |
|---------------|-----------|----------------------|---------------------------------------------|------------------------|-------|-------|-------|-------|-------|-------|-------|--|
|               | tiefe     | KAK <sub>eff</sub>   | BS                                          | austauschbare Kationen |       |       |       |       |       |       |       |  |
|               | (cm)      | rvarv <sub>eff</sub> | (%)                                         | Н                      | Al    | Fe    | Mn    | Ca    | Mg    | K     | Na    |  |
| Ар            | 0 – 15    | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| Ap,Sop        | n. b.     | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| Sd-Bt1        | 25 – 40   | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| Sd-Bt2        | 50 – 70   | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| Btv           | 80 – 95   | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| Bv            | 100 – 115 | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| ICc           | 125 – 140 | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| II ICn1       | n. b.     | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| ICn2          | n. b.     | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |
| III fBt       | n. b.     | n. b.                | n. b.                                       | n. b.                  | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. | n. b. |  |



# **Musterprofil 3**

# **Bodenphysikalische Analysendaten**

|               | Entnahme- | K     | orngrößer | nverteilun | g der Fein | erde <2 n | nm (Gew% | 6)    | Grob-          |
|---------------|-----------|-------|-----------|------------|------------|-----------|----------|-------|----------------|
| Hori-<br>zont | tiefe     | Ton   |           | Schluff    |            |           | Sand     |       | boden<br>>2 mm |
|               | (cm)      | Т     | fU        | mU         | gU         | fS        | mS       | gS    | (Gew%)         |
| Ар            | 0 – 15    | 20,3  | 13,4      | 24,2       | 38,1       | 2,2       | 1,0      | 0,8   | n. b.          |
| Ap,Sop        | n. b.     | n. b. | n. b.     | n. b.      | n. b.      | n. b.     | n. b.    | n. b. | n. b.          |
| Sd-Bt1        | 25 – 40   | 32,0  | 13,5      | 20,5       | 30,7       | 1,8       | 0,9      | 0,6   | n. b.          |
| Sd-Bt2        | 50 – 70   | 31,7  | 13,8      | 18,3       | 34,1       | 1,3       | 0,4      | 0,4   | n. b.          |
| Btv           | 80 – 95   | 28,9  | 9,7       | 25,4       | 34,0       | 1,2       | 0,5      | 0,3   | n. b.          |
| Bv            | 100 – 115 | 26,3  | 10,4      | 25,7       | 36,8       | 0,7       | 0,1      | <0,1  | n. b.          |
| ICc           | 125 – 140 | 17,2  | 8,5       | 31,7       | 41,0       | 1,2       | 0,3      | 0,1   | n. b.          |
| II ICn1       | n. b.     | n. b. | n. b.     | n. b.      | n. b.      | n. b.     | n. b.    | n. b. | n. b.          |
| ICn2          | n. b.     | n. b. | n. b.     | n. b.      | n. b.      | n. b.     | n. b.    | n. b. | n. b.          |
| III fBt       | n. b.     | n. b. | n. b.     | n. b.      | n. b.      | n. b.     | n. b.    | n. b. | n. b.          |


| Hawi          | Entnahme-     | Trocken-                   |                 | W      | assergeha | lt (Vol%) b | ei     |        |
|---------------|---------------|----------------------------|-----------------|--------|-----------|-------------|--------|--------|
| Hori-<br>zont | tiefe<br>(cm) | raum-<br>dichte<br>(g/cm³) | Probe-<br>nahme | pF 0,3 | pf 1,8    | pf 2,5      | pF 2,8 | pF 4,2 |
| Ар            | n. b.         | n. b.                      | n. b.           | n. b.  | n. b.     | n. b.       | n. b.  | n. b.  |
| Ap,Sop        | 18 – 22       | 1,51                       | n. b.           | 39,0   | 36,4      | 33,7        | 32,6   | 19,6   |
| Sd-Bt1        | 30 – 34       | 1,51                       | n. b.           | 39,1   | 36,5      | 34,9        | 34,1   | 24,1   |
| Sd-Bt2        | 53 – 57       | 1,54                       | n. b.           | 39,3   | 37,9      | 36,7        | 36,0   | 26,7   |
| Btv           | n. b.         | n. b.                      | n. b.           | n. b.  | n. b.     | n. b.       | n. b.  | n. b.  |
| Bv            | 105 – 109     | 1,54                       | n. b.           | 40,3   | 38,8      | 37,3        | 35,8   | 21,8   |
| ICc           | 128 – 132     | 1,56                       | n. b.           | 40,5   | 38,6      | 36,3        | 32,6   | 16,5   |
| II ICn1       | n. b.         | n. b.                      | n. b.           | n. b.  | n. b.     | n. b.       | n. b.  | n. b.  |
| ICn2          | n. b.         | n. b.                      | n. b.           | n. b.  | n. b.     | n. b.       | n. b.  | n. b.  |
| III fBt       | n. b.         | n. b.                      | n. b.           | n. b.  | n. b.     | n. b.       | n. b.  | n. b.  |





| Hori          | Entnahme-     |                  | Pore               | nanteile (Vol%)   |                  |                |
|---------------|---------------|------------------|--------------------|-------------------|------------------|----------------|
| Hori-<br>zont | tiefe<br>(cm) | Gesamt-<br>poren | weite<br>Grobporen | enge<br>Grobporen | Mittel-<br>poren | Fein-<br>poren |
| Ap            | n. b.         | n. b.            | n. b.              | n. b.             | n. b.            | n. b.          |
| Ap,Sop        | 18 – 22       | 43               | 7                  | 3                 | 14               | 20             |
| Sd-Bt1        | 30 – 34       | 43               | 6                  | 2                 | 11               | 24             |
| Sd-Bt2        | 53 – 57       | 42               | 4                  | 1                 | 10               | 27             |
| Btv           | n. b.         | n. b.            | n. b.              | n. b.             | n. b.            | n. b.          |
| Bv            | 105 – 109     | 42               | 3                  | 1                 | 16               | 22             |
| ICc           | 128 – 132     | 41               | 2                  | 2                 | 20               | 17             |
| II ICn1       | n. b.         | n. b.            | n. b.              | n. b.             | n. b.            | n. b.          |
| ICn2          | n. b.         | n. b.            | n. b.              | n. b.             | n. b.            | n. b.          |
| III fBt       | n. b.         | n. b.            | n. b.              | n. b.             | n. b.            | n. b.          |

# **Musterprofil 3**

